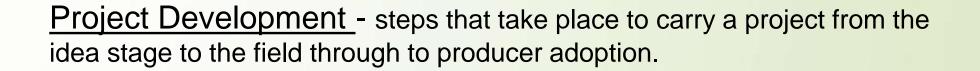


Cropportunities 2023 Wheatland Conservation Research Update Bryan Nybo, Wheatland Conservation Area Swift Current, SK. Mar 14, 2023

Agricultural Demonstration of Practices and Technologies

1+1 protection instanting and instanting former in



Presentation Outline

Brief Agri-ARM background
Developing a Project Forages in Rotation
Managing Drought with Split Application of N 2022

- How do we come up with a project idea?
- Project ideas usually originates from a need, a situation or an current issue facing producers

-directly from producers, media, farm shows, industry.

Hero Images Inc./ Alamy Stock Photo

Example: Resistant weeds -rotations to slow down weed resistance.
 Mutrient efficiencies -rotations to reduce dependencies on fertilizer N.
 Soil Health -rotation to improve soil health and Organic Matter.

Potential solutions

- Literature review / talk to other professionals to familiarize yourself with the issue. What work has been done and how can we adjust to make it practical and suitable to our area.
- Can it be done practically? <u>and</u> Do we have the Capacity?

Example: Forages in Rotation

-Can be a management tool help prevent weed resistance, and improve fertilizer efficiencies and soil health.

Forages in Rotation

Develop Protocol

-develop a treatment list that will best answer the issues at hand

-list of parameters to measure to obtain pertinent data from which conclusions can be made.

Attempt #1: Set up a rotation to show the benefits of including forages. -too long a time frame for funding sources.

Attempt #2: Demonstrate each phase of the rotation by setting up a series of plots each plot represents a year or phase of the overall rotation. –no visual effects.

Attempt #3: Demonstrate varieties / species best suited for including forages in rotation.

-Budget \$\$\$ (labor, inputs, rent, insurance, equipment depreciation / replacement / repairs, administration, accounting, overhead, GROWTH.)

Selecting forage alfalfa options based on Fall Dormancy (FD) ratings

- Fall dormancy (FD) rating is a measure of how much an alfalfa variety will regrow in fall after cutting.
- Alfalfa with an FD rating of 1 will regrow less after cutting and instead will stockpile energy resources, primarily in the root system to help survive prolonged winter freezing temperatures.
- An alfalfa with an FD rating of 5 with exhibit more fall regrowth after cutting so a producer can "push the envelope" on a later season cut. (at the expense of stockpiling energy)
- With forages in a rotation, we are not concerned so much with prolonging the forage stand because we only want the forage to last 2 or 3 years of the rotation before moving back to annual crops. This may be a practical option.

Treatment List (not confirmed, seed availability?)

- Alfalfa (FD 0-1) Rangelander, Rambler
- Alfalfa (FD 4-5) Instinct, Perfection, or PV Ultima
- Short Term Red Clover (short lived perennial)
- Alfalfa (FD 0-1) mix with bromegrass
- Alfalfa (FD 4-5) mix with Dahrian Wild Rye
- Alfalfa (FD 4-5) mix with field pea cover crop
- Alfalfa (FD 4-5) mix with a forage triticale
- Short Term Red Clover mix with a forage barley

Data Collection

- Weather data
- Establishment
- Biomass yield
- Over winter establishment / survival
- Year 2 biomass yield
- Forage quality
- Economics

			15.64			A CONTRACTOR OF	2414010			-			line of the	-	-						Territoria III.							
1.0.0	-			Designed.	Associat	Augustantinian (18)	ALC: NO.		Stitle Bank	Barris and	Makurita Taka	200	Travel Door		Case Stored Blomas	Month Party	Lines Hald	initer.	Dorban.	Materia	Cast Fait	Field No/W	-	Series .	-	Same in	Name of	-
		-		44	-11	i i		1111111111	100	10.88	784-18			277.8	. 33	10.10	1164	114			1987.1	112	24.04		8.10	- and the second	4.8 (2)	-
	98	-	-	-	141				0.14	10.96	and the part of the			277.8		1441	1001	1.04	-		1440.1		10.00	1.1	14.00		4.10	- 71
-					144			14			100.0	_	17					1.01				21.0	44.44					- 202
	913		<u>h</u>		122	1.0			10.64	dei al	184.4		- 202	341.8			1441				There .	81.4		1.1	-14.85	481	4.68	-50
1	-				111			1	18.81	7536	180.17		- 18	-(94.7		78	1108	4.84	18		1111.1	-81	22.04		4.0		4858	
1.	444								- 68					185.5			1004	6.8			0013	30					4858	- 24
1	1 1		het .	+++	- 194				697	411	1440/10	186	195	254	40	1876	1999	5.16	10		3482.4	21.6	,24,24		16.00		4.355	80.0
14				.00	101		. 11	- 10	41.0	3,6	Junch.		- 10	18.		- 1950	1845	1.00			HU.T.	n	,835.			16.71	5.91	- 8.8
-	<u> 1</u>			- 11	881	M	1.0		1.00	178	166.0			148.5		- 100	1882	1.81		-	1111.1		34.04		1.11	111	44100	31.0
44	44			119	. 254		- 19	P	7.87	#'M	itter.		1.0	10.5		1946	1111	1.84	18		1801.0	- H.I	24.28	1.8	18-02		4.52	243
	Y 1	1.0	u)	110		1.00			58-54	196.0	margine in		. 196	100.2		1000	1001	9,01	198		1348.0	84.0	44.00	+			1010	10.0
3	24,3	1.0	4	11	341		88	- 33	5.28	All INC.	1001	10	198	248.8		HIL	i a la	100	10	1.1	30011	11.6	31.94	11	4.34		4,8128	14.9
1		1.1	49	**	111	1.44		10.	10.01	1001-001	160.0	166	114	1000		1001	101	4.91	16	2.4	10111	441	36.0		10.04	16.47	4.151	- 11.0
4	1.1	1	192		4.84	1	40	- 10	11.01	18.0	MAGE 1		188	10.0		1181	1111	0.06	18		1994.1		11.00		18.85		410	
1	4 4	1.0	**			4	- ++		0.00	100.000	104-11	10	100	101.7			0000	1.00	10		1111.1	46.1		1.4	4.00	14.00	1110	
1	Y . 3	1.0	**	44 .	. 10	1.1.1.6	40	-	1.10	10.10	Next	105	-	100.8		10040	1015	1.85	10		1111.0	91.6	31.00		6.88		4,6736	-
4	1.1.1	1.0		111	100	1 Cal 1	10.00	6.0	10.01	105.11	Absort.	- 180	144	188.	1.4	100		578		1.6	1000.0	44.6	40.96		18.84		4.10	147
4	1 .	1.1	194	148	1.11			718	1919	10.58	steeping.	10	108	798.8		1010	1995	4.00	14	1.4	1682.9	1814	106.74	.+	28.00	114	4100	12.4
4	4 4	1.1			100	4	44	-01	1444	105.80	division of the	-	140	164.5		1041	1944	4.04	in .		1440.1	44.0	144.545	0.0	6.00	1.114	44.00	100
4	1 4		111	44	101	4.0	14	1.6	1.34	34248	164-18		. 179	20.8		the	100	4.19	10		1448.4	84.0	181.4		18.69		4 108	.947
1.1	4 4	1.0	41	10	4.00		10	141	1.00	111.60	144.0	146	141	1000.7			1164	141	16		1000.4	- 81.0	44.00		6.41	- 184	4.840	10.0
	4 1		11	44	344			14	10.00	10.48	1044110	-	185	100.5		1000	1995	3.41	10 -		10014	49.1	100.000	+	4.0	10.00	44100	181.0
4	4 4	1.10	44		1.644		40	81	8.29	44.107	1.846.08		80		- 66	-104	1467	6.10	10		+686.7	35.6	.14		14.00	14.11	4.540	348
			116		111	1.8		1981	0.79	1002 046	444.71	146	140	124.9		-	1686	4.94	10		11104-0	4.5	91.00		10.04	18.10	4.300	243
	4 3	1.1	**	44			14	- 44	18.6	10.72	A they red	100		242.2	4.1	200	4941	1.04			1644		44.4	111	4.85	-14.07	4.000	with the second
4	1 1	1	44	47	- 101	1.6	- 40	-		1010	10 mg - 0	-		101.1		100	1010	4.10	19		1000-0		10.4			-00-01	49.00	1010
	2 1	1.1	44	44	141		641	84	0.66	Del.h	10410	10	SMC .	IAC A			1184	1.00	10		1007.4	81.0	21.0		14.00	14.00	4.50	34.0
	213		144			4	11		10.44	2418	(make int	-	144	194.5	4.4	-	1945	1.01		1.4	1001.4	21.9			4.00		4005	- 1011
			*1	10	100	10	10	90	NT.	2024	Wing it		100	Jes.)		111	1144	1.14	19	1.6	1186-1	31.8	24.00	1.0	16.65	21	4.18	
	: E		14		100				2.11	10110	mage 1		-	141		-	1000	8.00	1.140		1007.0				10.00		410	
1	1		-					1	100	907	184.71		- 10	30.1		-	1110	1.60	144		1444.7	11.1	44.000	1.0	4.14		4.9-08	-
	11	-	144	110	100			1.4	# 1A	100	100.0			1992.0		1.04	1411		144		1001.0	- 110	44.04		14.44	- 04.4	1.00	
	: 1						10.47		210	100.00		-		101.0		-	-	1.01		1.5	1001.0		1000	1		-	1000	
				-			1011	- A -		10.00	100010		- 10				- ACM -	- 103			10010				- 6.0	- 201	1.0.00	-

Results and Extension

-Collect all data.

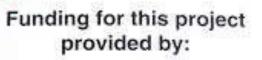
-Statistical Analysis to determine data significance and determine confidence in the data.

-Interpretation of results.

-Extend results to the producer so they can confidently apply technology to their operation.

- Field Tours
- Seminars
- Fact sheets
- WCA website
- Agri-ARM website
- Social Media

Demonstrating Forages Options in Cropping Rotations


• Promote Benefits

-improve fertilizer efficiencies -increased organic matter and soil quality -better water infiltration and drainage -reduce weed populations -break disease cycles -reduce salinity and soil erosion -divert the work load away from the busy seeding and harvest seasons. -Economic benefits. (can be difficult to quantify)

Agriculture and Agri-Food Canada plant breeder Dr. Yousef Papadopoulos holding a sample of AAC Trueman alfalfa to show its branching root and unique rhizomatous growth habit systems. Photo: AAFC

Managing Drought Risk with Split Applications of Nitrogen in Spring Wheat

ADOPT

Agricultural Demonstration of Practices and Technologies

B+B Spinister, immennen terne

This project falls under the 4 R Nutrient Stewardship Program

- Saskatchewan represents more than 37.1 million acres of cropland in Canada. The province will play a significant role toward sustainable farming in Canada
- In November 2016, the Government of Saskatchewan and Fertilizer Canada signed a Memorandum of Cooperation agreeing to work together on the ongoing implementation and adoption of fertilizer application practices using 4R Nutrient Stewardship (Right Source @ Right Rate, Right Time, Right Place ®).
- Why?? To strengthens existing environmental stewardship by adopting science-based fertilizer application practices using 4R Nutrient Stewardship.
- AND....Make fertilizer practices more efficient and economical for producers.

Managing Drought Risk with Split Applications of Nitrogen in Spring Wheat

Agricultural Demonstration of Practices and Technologies

1+1 Billiona Annan - ----

Objective

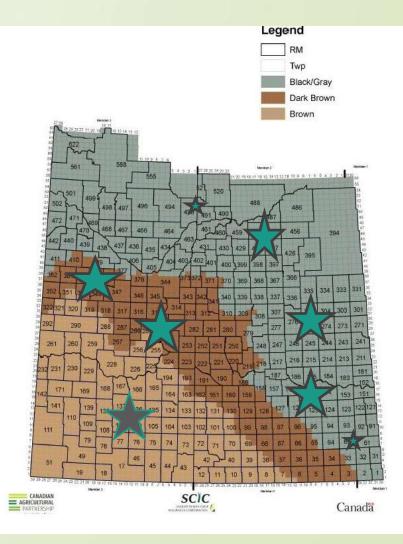
The overall objective of this project is to demonstrate approaches to N management for Spring Wheat following a year of drought.

More specifically, to show the economics of holding back N at seeding, during droughts, and demonstrate the efficacy of split applications of N relative to placing all the nitrogen requirements at seeding.

Question 1

- In 2021, wide spread drought in Saskatchewan depleted reserves of soil moisture and increased background levels of nitrogen.
- In the spring of 2022, the perceived risk of drought was relatively high across much of Saskatchewan. In response, producers asked "should we hold back on rates of N applied at seeding to save money if drought continues?"

Question 2


- Should adequate and timely precipitation be received, producers may choose to apply more N post-emergent to support higher yield potentials. Will this approach come at a penalty compared to applying all the N at seeding time?
- To answer this, we will need 2 sites (one dry site and one wet site).

2022 Project Locations

Six locations involved in this study include: -Swift Current (WCA) Bryan Nybo / Amber Wall -Indian Head (IHARF) Chris Holzapfel -Melfort (NARF) Brianne McInnes -Scott (WARC) Jessica Enns -Outlook (ICDC) Gursahib Singh -Yorkton (ECRF Project Lead) Mike Hall

Treatment List (SB urea – Dribble band UAN w/Agrotain)

Trt#	Lb N/ac at seeding	Post-emergent UAN ^b	Total N			
	(Soil+Fert N)	(30 lb N/ac)	(60 lb N/ac)	(90 lb N/ac)	(Ib N/ac)	
1	Soil N				Soil N	
2	80				80	
3	110				110	
4	140				140	
5	170				170	
6	80		60@3-5 leaf		140	
7	80		60@early flag		140	
8	80			90@3-5 leaf	170	
9	80			90@early flag	170	
10	110	30@3-5 leaf			140	
11	110	30@early flag			140	
12	110		60@3-5 leaf		170	
13	110		60@early flag		170	

- Target 60 bu/ac. (requires 162 lbs N)
- N @ seeding includes
 Soil + Fert N.
- N response curve
- 140 @ seeding vs four split options
- 170 @ seeding vs four split options

What was Measured?

- **Residual soil nutrients & qualities:** Composite sample (0-15 cm, 15-60 cm) submitted to AgVise for OM, pH, CEC, NO3-N, Olsen-P, K & S determination (minimum, complete analyses)
- **Spring Emergence:** (~4 weeks after seeding)
- **Lodging:** On a scale (0-9)
- Seed Yield: Corrected for dockage and to 10% seed moisture content
- Grain Protein: (%)
- **Precipitation:** Precipitation (date and amount) from Environment Canada records was used from local weather stations when interpreting the data.
- Economic Analysis: Basic marginal economic analyses for each treatment to estimate the relative economic returns

Growing Season Precipitation (May – Aug 2022)

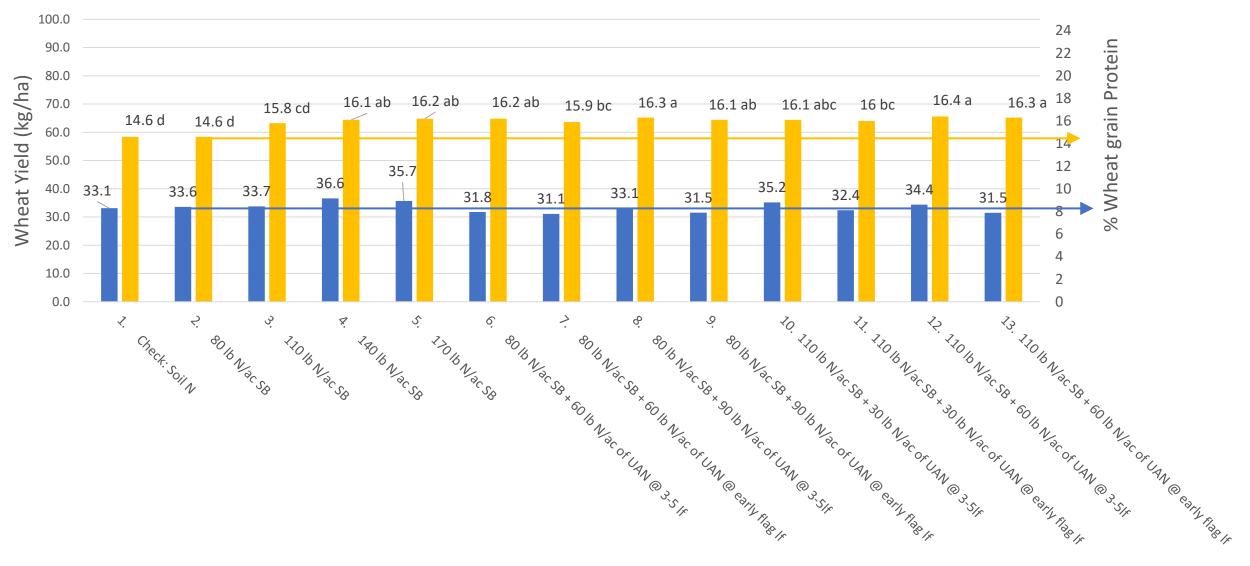
Location	Year	May	June	July	August	Total			
		Precipitation (mm)							
Swift Current	2022	51.2	37.7	90.4	7.5	187			
	Long-term	44.1	74.5	51.9	43.2	214			
Scott	2022	11.0	57.1	86.5	32.1	187			
	Long-term	38.9	69.7	69.4	48.7	227			
Indian Head	2022	97.7	27.5	114.5	45.9	286			
	Long-term	51.7	77.4	63.8	51.2	244			
Melfort	2022	90.8	78.1	34.9	36.5	240			
	Long-term	42.9	54.3	76.7	52.4	226.3			
Yorkton	2022	137.9	57.9	38.4	90.8	325			
	Long-term	51	80	78	62	271			
Outlook	2022	30.4	69.4	51.4	8	159			
(190 mm lrr)	Long-term	43.2	69.3	57.6	44.2	214.3			

Wheatland Conservation Area Inc. (WCA)

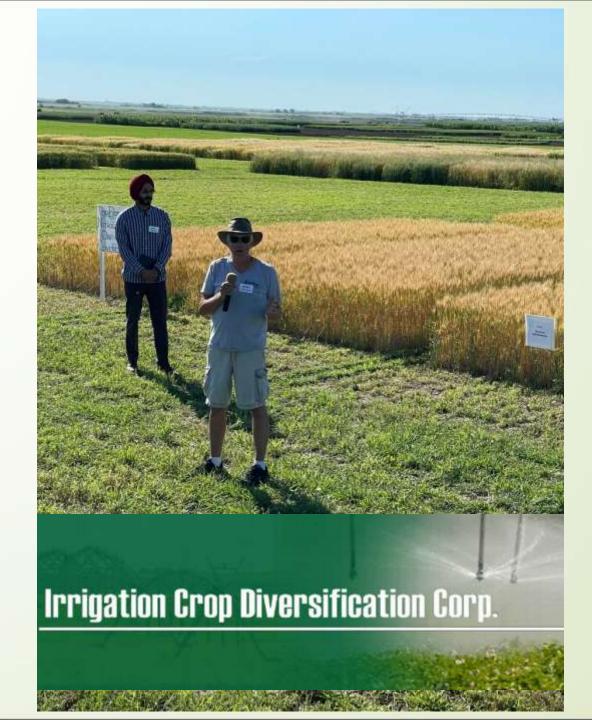
-Well below average growing season precipitation

-High residual N levels (59 lbs N/ ac 0-24 inches)

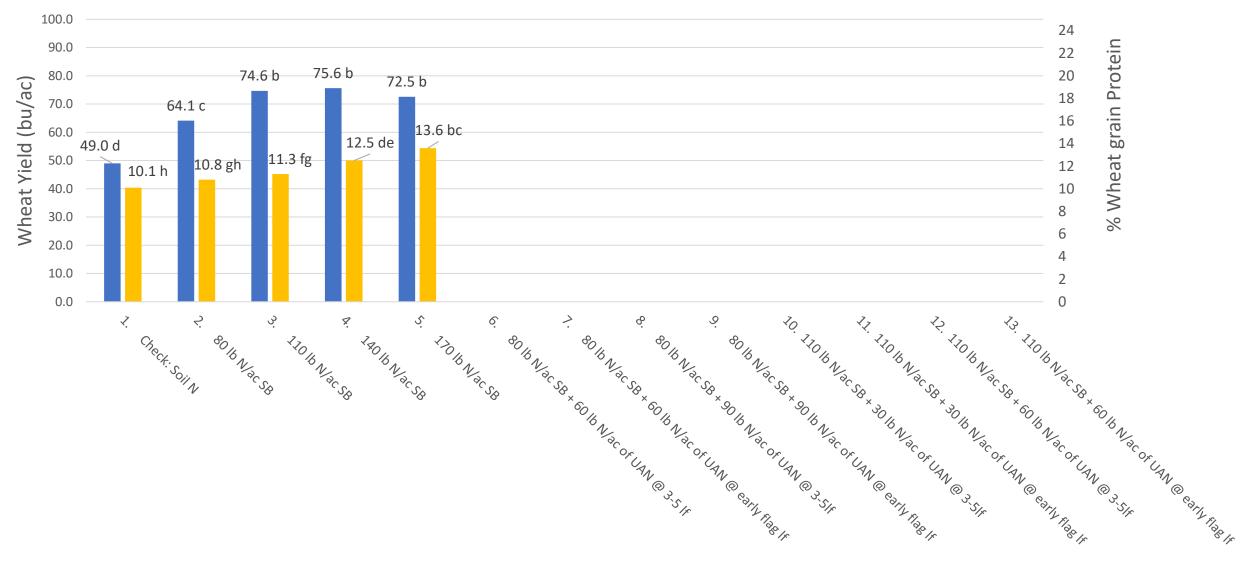
Question 1. Can we save money by holding back N at seeding in drought conditions?

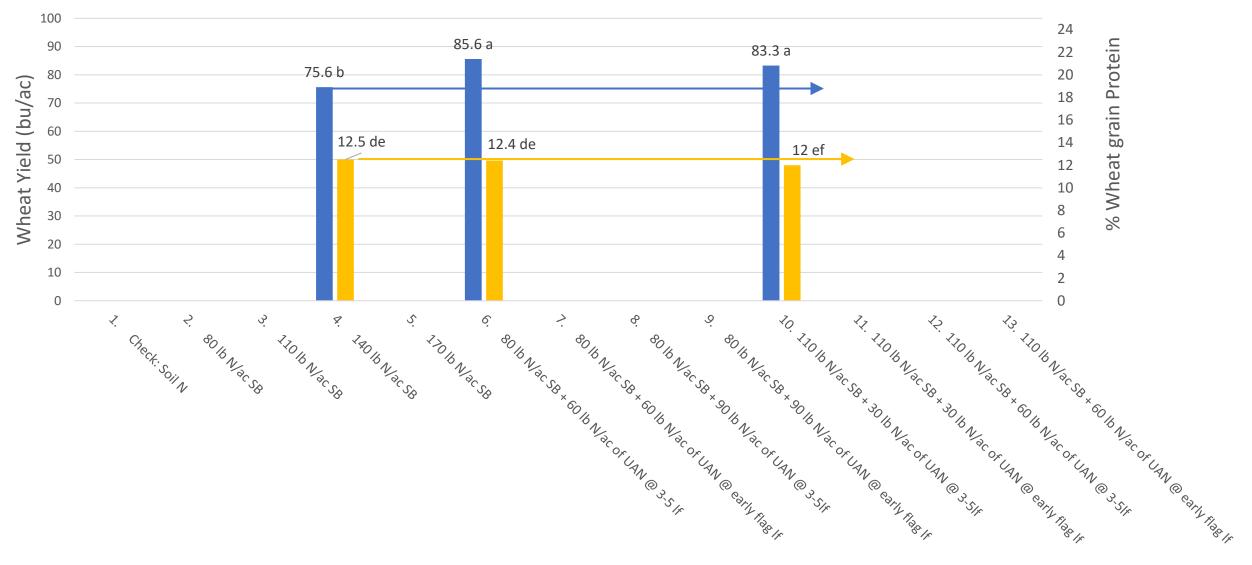


WCA-Swift Current


WCA-Swift Current

WCA-Swift Current 0 0 trt 2 (\$/ac) -8 -12 -20 -40 -36 -60 -57 to -80 -74 -78 -79 relative -100 -93 -99 -120 -120 -123 -140 Revenue 13. 110 IB N ac SB * EO IB N ac OF UAN @ Carry. 10. 110 IB N ac SB × 30 IB N ac or UAN ® 3.5 IF ? ? ઝ S Ģ Ġ Ŷ , SOIBNIACSB[×]901BNIACOFUAN®^{early}. Ζ. 8 . SOIBNIACSB[×]GOIBNIACOFUAN®^{early}. SOIBNIACSB×90IBNIACOFUAN®351F SOIBNIACSB×60IBNIACOFUAN®3551F O IBNIAC SB 110 IBN SB Check. Soil N 140 IBN Jac SB 101BN ac SB \$10.56/bu @12.5% protein \$0.66/%/bu (protein premium) \$1.33/lb N \$10/ac UAN application cost

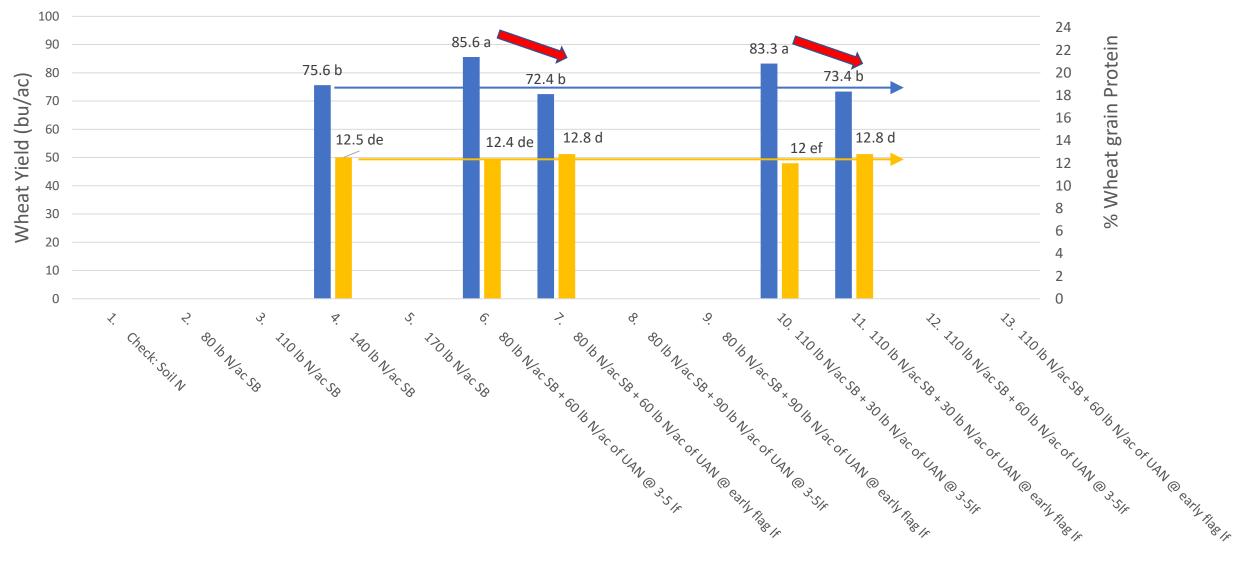


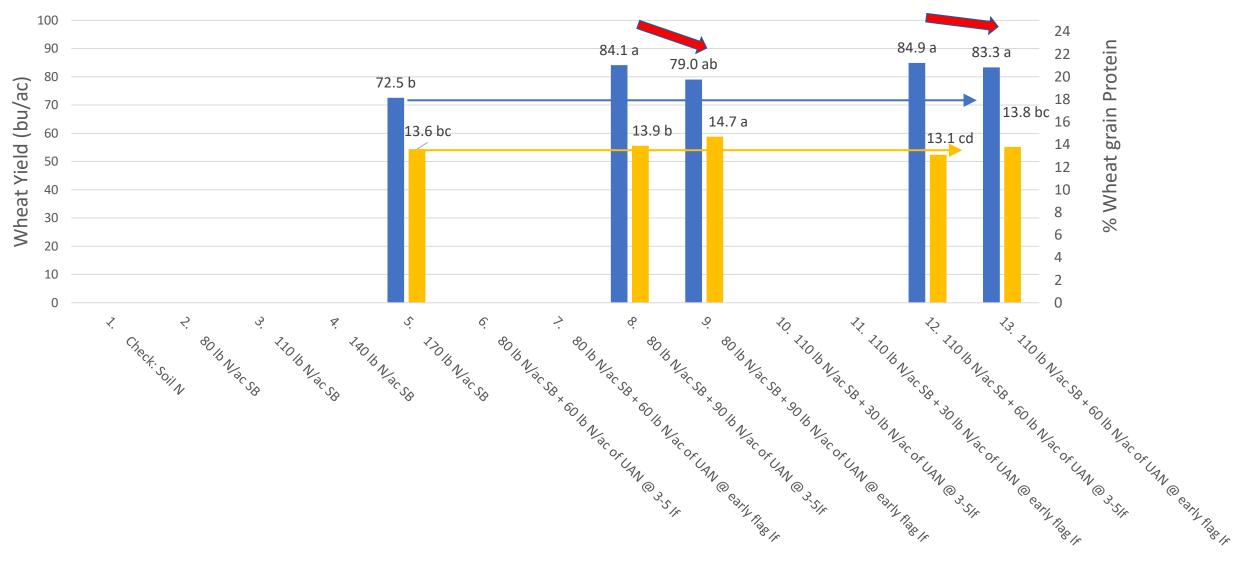


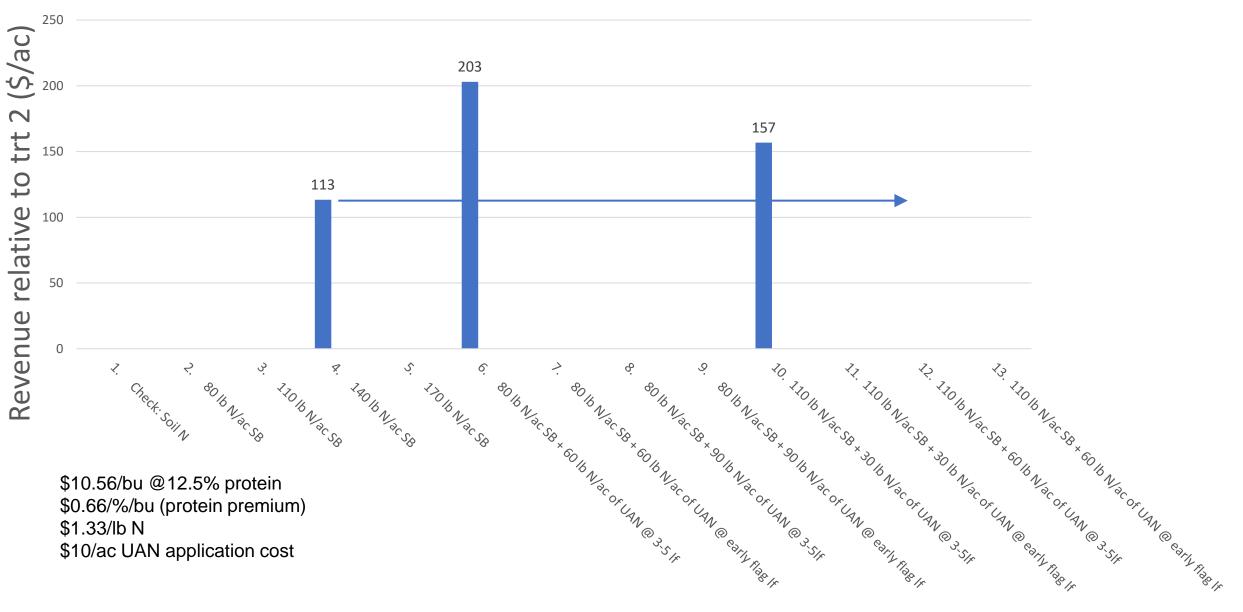
-160 mm precipitation + 190 mm irrigation = 350 mm total

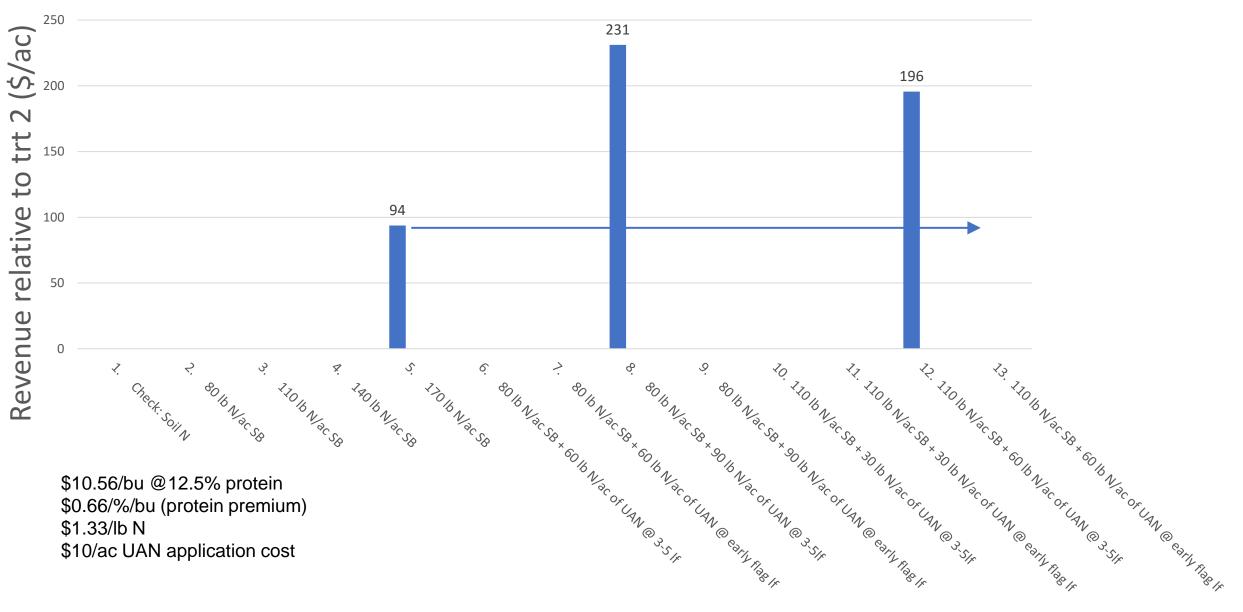
-Relatively high residual N for an irrigated site. (37 lbs/ac 0-24 inches)

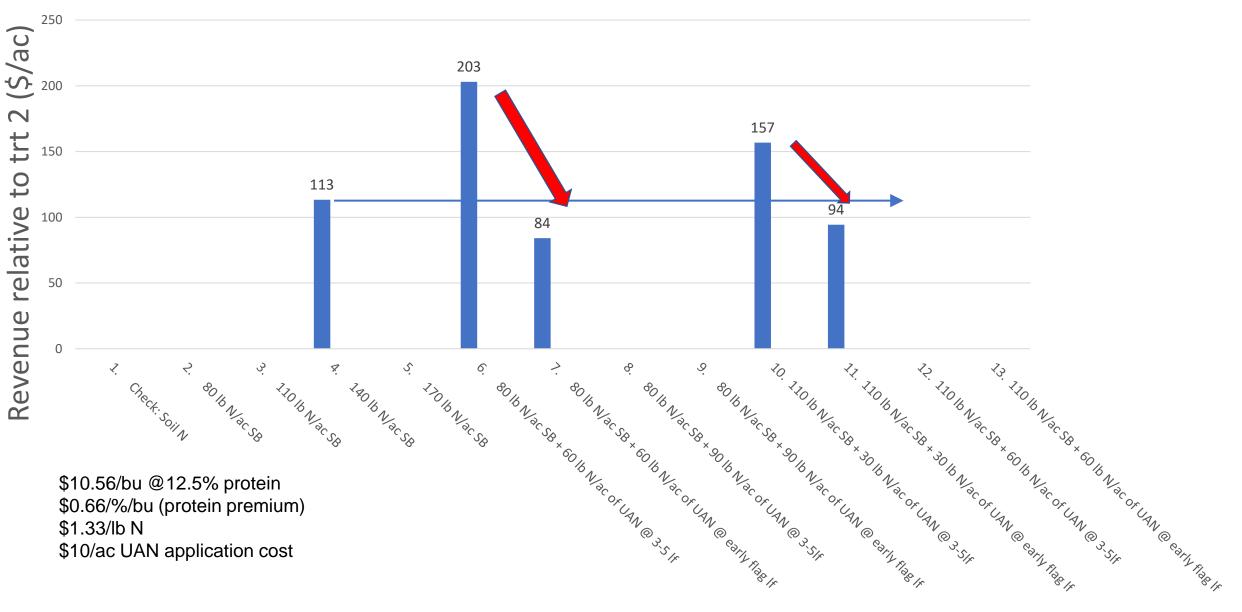
Question 2. If you "hold back" N at seeding and top up N later, are there yield penalties associated with split applic of N verses applying all the N at seeding?




■ yield ■ Protein




■ yield ■ Protein



■ yield ■ Protein

Is the strategy of applying split applications a viable option to manage N following a drought year?

- Yes, if 4R guidelines are followed.
- Right Source
- Right Rate
- Right Time
- Right Place

<u>Summary</u>

Question 1. Can we save money by holding back N at seeding in drought conditions?

The strategy of "holding back" N at seeding and having the option to opt out of applying additional post emergent N when growing conditions don't improve showed substantial savings at Swift Current and Scott.

Question 2. Is there a yield penalty when you "hold back" N at seeding and top up N later as a split application?

The strategy of "holding back" N at seeding and using split application showed substantial benefits **under wetter conditions when applied at the right time**.

Stay Tuned!!!

Future work could be done involving:

- -Fine tuning rates and timing of split application nitrogen.
 -Comparing different N sources (urea or urea treated with N stabilizers).
- -Where is the unused N applied at Swift Current and Scott? Some might be there next spring but very vulnerable to losses in the absents of plant growth through volatilization, leaching, and denitrification.

2023 Wheatland Annual Meeting 3:30 pm 2023 Wheatland Annual Tour July 20th

Reisner Seed Farm

Agri**ARM**

www.wheatlandconservation.ca

Funding for this project provided by:

ADOPT

ricultural Demonstration of

Governmen of askatchewa

Thank you!

Mike Hall Project Lead ECRF Yorkton Participating Sites IHARF Indian Head ICDC Outlook NARF Melfort WARC Scott WCA Swift Current

