

Lentil Integrated Pest Management: Managing Aphanomyces with Soil Strategies

Amber Wall, Wheatland Conservation Area

2025 Annual Summer Tour

• Thursday, July 17, 2025

Partners

- Government
- Industry Partners
- Commodity Groups
- AAFC
- Universities

SOUTH EAST

AgriARMLocations **Applied Research Management**

CLC - Prince Albert **Conservation Learning Centre**

NARF - Melfort Northeast Agriculture Research Foundation

WARC - Scott Western Applied Research Corporation

Irrigation Saskatchewan - Outlook Irrigation Saskatchewan

South East Research Farm

ECRF - Yorkton East Central Research Foundation

WCA

WARC

RRIGATION Saskatchewan

Integrated Pest Management (IPM) for Lentils in Aphanomyces Soil

Locations:

- Western Applied Research Corporation (WARC) in Scott, SK. RM #308
- 2. South East Research Farm (SERF), in Redvers, SK. RM #61
- 3. Irrigation Crop Diversification Corporation (ISask) in Outlook, SK. RM #284
- 4. Wheatland Conservation Area (WCA) in Swift Current, SK. RM #137

Experimental design:

Years:

- RCBD
- 4 replicates

• 2024-2026

General weather conditions

Redvers growing season precipitation

Environment Canada

^zLong-term average (1981-2010)

Treatments

#	N rate (lb/ac) *	Seed Treatment**	Seeding Date***
		(Y/N)	
1	0	Y	Early
2	0	Y	Late
3	0	Ν	Early
4	0	N	Late
5	50	Y	Early
6	50	Y	Late
7	50	N	Early
8	50	N	Late
9	100	Y	Early
10	100	Y	Late
11	100	Ν	Early
12	100	Ν	Late

*N Rate (applied as urea)

**Treated with Rancona Trio @500ml/100kg seed

***1st Seed Date: Early seeding date of Early May; Late seeding date of Mid-May

Agronomics

- Variety: A common, high yielding variety common to each area, CDC Impulse
- Seed Rate: 190 seeds/m2
- 2 Seed Dates: 2 weeks apart
- Inoculant: Granular rhizobial inoculant
- Seed Treatment: A seed treatment will be applied to the seed prior to sowing for specific treatments
- Fertility: N fertility will be side banded at seeding, (soil N not be taken into account), but an area with low residual N is recommended.
- PKS will be balanced using soil test recommendations

<image><image><section-header><section-header><section-header><section-header><section-header>

• **Pesticides:** best management practices

Operations

	Early Seed Date Treatments		Late Seed Date Treatments	
Operation	Scott	Swift Current	Scott	Swift Current
Seed Date	05-May	29-Apr	22-May	13-May
Soil Temp at Seeding	5.2	9.5	8.0	15
Rolled	9-May-24	13-May	28-May	13-May
Emergence Date	20-May	18-May	03-Jun	27-May
Pre-seed herbicide	04-May	23-Apr	21-May	23-Apr
In-crop herbicide	02-Jun	20-Jun	19-Jun	20-Jun
Fungicide	11-Jul	none	11-Jul	none
Insecticide	none	23-Jul	none	23-Jul
Dessication	14-Aug	n/a	22-Aug	n/a
Harvest Date	20-Aug	31-Jul	27-Aug	06-Aug

June 6, 2024 at Swift Current. First seed date (left), second seed date (right)

Data collection

Soil test to confirm Aphanomyces

- Heights
- Above ground disease ratings
- Root Assessments
- Nodule Assessments
 - NDVI

• Disease Seed Testing

• Economics

Plant Density (Swift Current 2024)

- No Nitrogen, or seed date effect on plant density at Redvers, Outlook, or Scott
- All sites had adequate emergence

Seed treatment x emergence

■Seed Trt ■UTC

Seed treatment x yield (bu/ac)

Nitrogen rate x yield (bu/ac)

Seed date x yield (bu/ac)

Root disease quantification

Saskatchewan

Growe

Above ground disease ratings (Chatterton, 2023)

Shoot symptoms rating scale:

52					
1:	healthy plants				
2:	Slight yellowing of lower leaves				
3:	Yellowing of the lower leaves up to the 3rd or 4th node, some stunting				
4:	Necrosis of at least half or more of the leaves with some stunting				
5:	Plant dead or nearly so				

https://www.topcropmanager.com/aphanomyces-in-lentil-breeding-for-resistance/

Nitrogen rate x shoot health

• Seed treatment had no effect on visual shoot ratings

Seed date x shoot health

IRRIGATION Saskatchewan

Root Rot Assessments (Chatterton, 2023)

Root rot rating scale for root rot:

- 0) No root discoloration
- 1) 1-25 % discoloration
- 2) 25-50 % discoloration
- 3) 50-75 % discoloration, epicotyl is still healthy
- 4) 75-100 % discoloration, honey-brown lesion extending from epicotyl to crown
- 5) Dead plant

Root Rot Ratings (0-5, 0=no discoloration)

Nitrogen rate x root health

Seed date x root health

• Seed treatment had no effect on visual root ratings

Nodule Assessment

TOTAL SCORE

11-13 Effective nodulation. Good nitrogen fixation potential.
 7-10 Nodulation less effective. Fixation potential reduced. Were inoculation or growing conditions less than optimum?
 1-6 Generally unsatisfactory nodulation. Requires evaluation of inoculants used, inoculation methods and of growing

Seed date x nodulation

conditions on site.

Nitrogen rate x nodulation

Summary after 1 year...

- Overall response to seed treatment was unclear
- Additional Nitrogen applications did not increase yields
 - Nitrogen x Seed Date: lower emergence at Swift Current when additional nitrogen was applied at the later seed date
 - Additional nitrogen resulted in decreased yields at Outlook
 - Effect on root health and nodulation unclear at high moisture sites, but nodulation decreased with any addition of nitrogen at Swift Current
- Seed DATE
 - Early seed dates resulted in higher emergence at Swift Current
 - Early seed dates resulted in higher yields, although not significant at Scott
 - Early seed dates resulted in lower root disease ratings
 - Seed date effect on shoot/root health and nodulation unclear
- Develop site-specific recommendations by testing root rot mitigation strategies under multiple soil conditions

Final report to be prepared by Alex at Western Applied Research Foundation

Lentil Response to Varying Rates of Potassium and Sulfur Fertilizer Applications

- Swift Current (Brown soil zone)
- Scott (Dark Brown soil zone)
- Indian Head (thin Black soil zone)
- 2023-2024
- Small Red Lentils

Treatments

• Side-banded at seeding

#	Nitrogen ^z (kg N/ha)	Phosphorus (kg P ₂ O ₅ /ha)	Potassium (kg K ₂ O/ha)	Sulphur (kg S/ha)	Description
1	0	0	0	0	No fertilizer applied
2	10	45	0	0	Phosphorus only
3	10	45	22	0	Low Potassium
4	10	45	45	0	High Potassium
5	19	45	0	11	Low Sulphur
6	29	45	0	22	High Sulphur
7	19	45	22	11	Low Potassium – Low Sulphur
8	19	45	45	11	High Potassium – Low Sulphur
9	29	45	22	22	Low Potassium – High Sulphur
10	29	45	45	22	High Potassium – High Sulphur
11	29	45	0	0	Extra Nitrogen Check

^z Except for treatment #11 which received supplemental urea, all N was provided by MAP and AMS

Data collection

 Residual Soil Nutrients – A composite soil sample will be collected in the early spring. The composites should be representative of the entire trial area and consist of 12-16 individual soil cores. Sampling depths of 0-15 cm and 15-60 cm will be dried, ground and submitted to AgVise for complete analyses (Option F)

2) Emergence – Count plants in 2 x 1 m sections of crop row when emergence is complete (4-6 weeks after seeding)

3) Seed Yield – Yield corrected for dockage and to a uniform seed moisture content of 13%

4) Test Weight – Determined using standard CGC methods, use the average of two measurements per plot

5) Seed Size – Count and weigh 1000 seeds per plot and calculate g/1000 seeds

6) Grain Protein – Determined by IHARF using a FOSS NIR instrument

Yield (kg/ha)

- soil tests did not indicate a high probability of response for either K or S
- modest amounts of K and S
 may be applied as part of
 longer-term or rotation wide
 nutrient management plan
- important nutrients to overall plant health

Mean seed yields for individual lentil K and S fertility treatments at Indian Head, Scott, and Swift Current (2023).

#	N-P2O5-K2O-S (kg/ha)	Indian Head	Scott	Swift Current
	-		Seed Yield (kg/ha)	
1	0-0-0-0	2469 A	3849 A	1170 A
2	10-45-0-0	2679 A	4006 A	1300 A
3	10-45-22-0	2790 A	4049 A	1301 A
4	10-45-45-0	2715 A	3789 A	1338 A
5	19-45-0-11	2774 A	3514 A	1218 A
6	29-45-0-22	2581 A	3689 A	1252 A
7	19-45-22-0	2564 A	3644 A	1386 A
8	19-45-45-11	2705 A	3578 A	1335 A
9	29-45-22-22	2772 A	3738 A	1374 A
10	29-45-45-22	2715 A	3946 A	1344 A
11	29-45-0-0	2794 A	3689 A	1348 A
	S.E.M.	121.2	213.5	73.3

Lentil Response to Varying Rates and Combinations of Potassium and Sulfur Fertility (Project #AP-2317a). Interim Report 2023.

Thank you!

Michael Brown, Agronomy Manager, Saskatchewan Pulse Growers

Jessica Enns, Research Manager, Western Applied Research Corporation

Alex Waldner, Research Tech, Western Applied Research Corporation

Chris Holzapfel, Research Manager, Indian Head Agricultural Research Foundation

Lana Shaw, Research Manager, South East Research Farm

Gursahib Singh, Former Research Manager, Irrigation Saskatchewan Agri-ARM site

wcawall@sasktel.net THANK YOU!

Cropportunities March 13, 2025

bulse Growers

www.wheatlandconservation.ca

X: @wheatlandsask

Facebook: Wheatland Conservation Area

